Construction of Neuroanatomical Shape Complex Atlas from 3D Brain MRI
نویسندگان
چکیده
This paper proposes a novel technique for constructing a neuroanatomical shape complex atlas using an information geometry framework. A shape complex is a collection of shapes in a local neighborhood. We represent the boundary of the entire shape complex using the zero level set of a distance function S(x). The spatial relations between the different anatomical structures constituting the shape complex are captured via the distance transform. We then leverage the well known relationship between the stationary state wave function psi(x) of the Schrödinger equation -h2nabla2 psi + psi = 0 and the eikonal equation //nablaS// = 1 satisfied by any distance function S(x). This leads to a one-to-one map between psi(x) and S(x) and allows for recovery of S(x) from psi(x) through an explicit mathematical relationship. Since the wave function can be regarded as a square-root density function, we are able to exploit this connection and convert shape complex distance transforms into probability density functions. Furthermore, square-root density functions can be seen as points on a unit hypersphere whose Riemannian structure is fully known. A shape complex atlas is constructed by first computing the Karcher mean psi(x) of the wave functions, followed by an inverse mapping of the estimated mean back to the space of distance transforms in order to realize the atlas. We demonstrate the shape complex atlas computation via a set of experiments on a population of brain MRI scans. We also present modes of variation from the computed atlas for the control population to demonstrate the shape complex variability.
منابع مشابه
Construction of a neuroanatomical shape complex atlas from 3D MRI brain structures
Brain atlas construction has attracted significant attention lately in the neuroimaging community due to its application to the characterization of neuroanatomical shape abnormalities associated with various neurodegenerative diseases or neuropsychiatric disorders. Existing shape atlas construction techniques usually focus on the analysis of a single anatomical structure in which the important ...
متن کاملWarping a Neuro-Anatomy Atlas on 3D MRI Data with Radial Basis Functions
Navigation for neurosurgical procedures must be highly accurate. Often small structures are hardly seen on pre-operative scans. Fitting a 3D electronic neuroanatomical atlas on the data assists with the localization of small structures and dim outlines. During surgery also brainshifts occurs. With intra-operative MRI the preoperative MRI can be warped to the real 3D situation. The paper describ...
متن کاملA Digital Brain Atlas for Surgical Planning, Model-Driven Segmentation, and Teaching
We developed a three-dimensional (3D) digitized atlas of the human brain to visualize spatially complex structures. It was designed for use with magnetic resonance (MR) imaging data sets. Thus far, we have used this atlas for surgical planning, model-driven segmentation, and teaching. We used a combination of automated and supervised segmentation methods to define regions of interest based on n...
متن کاملA three-dimensional, histological and deformable atlas of the human basal ganglia. I. Atlas construction based on immunohistochemical and MRI data.
This paper describes the construction of an atlas of the human basal ganglia. The successive steps of the construction were as follows. First a postmortem specimen was subjected to a MRI acquisition prior to extraction of the brain from the skull. The brain was then cryosectioned (70 microm thickness). One section out of ten (80 sections) was Nissl-stained with cresyl violet, another series of ...
متن کاملHigh-resolution 3D MRI of mouse brain reveals small cerebral structures in vivo.
This work demonstrates technical approaches to high-quality magnetic resonance imaging (MRI) of small structures of the mouse brain in vivo. It turns out that excellent soft-tissue contrast requires the reduction of partial volume effects by using 3D MRI at high (isotropic) resolution with linear voxel dimensions of about 100-150 microm. The long T(2)* relaxation times at relatively low magneti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 13 Pt 3 شماره
صفحات -
تاریخ انتشار 2010